Search results for "energy harvesting."

showing 10 items of 84 documents

Experimental investigation on different rainfall energy harvesting structures

2018

In this paper proposes an experimental comparison between different rainfall harvesting devices and the study of the corresponding electrical rectifying circuit. More in detail, three harvesting structures are considered: the cantilever, the bridge and the floating circle. For each of the proposed structure, different waveforms have been acquired and discussed. The processed data have been compared in order to suggest the best choice for the rectifying circuit, from the simplest one to the most endorsed in the technical literature.

010302 applied physicsCantileverComputer scienceRenewable Energy Sustainability and the EnvironmentRainfall energy harvester02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici021001 nanoscience & nanotechnology01 natural sciencesTechnical literatureBridge (nautical)Settore ING-IND/31 - ElettrotecnicaTransducer0103 physical sciencesAutomotive EngineeringElectronic engineeringWaveform0210 nano-technologyEnergy harvestingPiezoelectric effectHardware_LOGICDESIGN
researchProduct

Measuring rain energy with the employment of “Arduino”

2016

This paper presents the performances of rainfall energy harvesting through the use of a piezoelectric transducer and an Arduino-based measuring system. Diverse studies agree on the possibility of generating electricity from rainfall, but to date, a study that can measure the quantity of energy produced during rainfall is still missing. The present study begins with results obtained from laboratory researchers using piezoelectric transducers and oscilloscopes — to measure the energy produced from a single raindrop — and concludes with an ad hoc Arduino-based measuring system, aimed at measuring the actual amount of electrical energy produced by a piezoelectric transducer that is exposed to r…

010302 applied physicsMeasure (data warehouse)EngineeringEnergy harvestingbusiness.industryElectric potential energyElectrical engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici021001 nanoscience & nanotechnologySettore ING-INF/01 - Elettronica01 natural sciencesSettore ING-IND/31 - ElettrotecnicaElectricity generationTransducerArduino0103 physical sciencesOscilloscope0210 nano-technologybusinessEnergy harvestingPiezoelectric sensorEnergy (signal processing)2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

Long term stability testing of oxide unicouple thermoelectric modules

2019

Thermoelectric devices based on oxides are good candidates for energy harvesting technologies for use in aggressive conditions where the materials should withstand high temperatures and corrosive environments over prolonged time. This leads to a natural concern for the stability of the electrical contacts, especially on the hot side of the module. In this work, we have assembled several prototype unicouple thermoelectric modules made by pyrolyzed and spark plasma sintered n-type CaMnO3 and p-type Ca3Co4O9 and then tested under different conditions mimicking end-user applications. For baseline experiments we have chosen to use nickel as the contact material in order to show the effect of its…

010302 applied physicsWork (thermodynamics)Materials scienceOxidechemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectrical contactsNickelchemistry.chemical_compoundVDP::Teknologi: 500Thermoelectric generatorchemistry0103 physical sciencesThermoelectric effectComposite material0210 nano-technologyEnergy harvestingPower density
researchProduct

Viewpoint: Atomic-Scale Design Protocols toward Energy, Electronic, Catalysis, and Sensing Applications

2019

Nanostructured materials are essential building blocks for the fabrication of new devices for energy harvesting/storage, sensing, catalysis, magnetic, and optoelectronic applications. However, because of the increase of technological needs, it is essential to identify new functional materials and improve the properties of existing ones. The objective of this Viewpoint is to examine the state of the art of atomic-scale simulative and experimental protocols aimed to the design of novel functional nanostructured materials, and to present new perspectives in the relative fields. This is the result of the debates of Symposium I "Atomic-scale design protocols towards energy, electronic, catalysis…

010405 organic chemistrySensing applicationsChemistryNanostructured materials: Physics [G04] [Physical chemical mathematical & earth Sciences]Physik (inkl. Astronomie)010402 general chemistry01 natural sciencesAtomic units0104 chemical sciencesInorganic Chemistry: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Systems engineeringMultilayers | Interfaces (materials) | Individual layermaterials theory computational DFT modellingPhysical and Theoretical ChemistryEnergy harvestingEnergy (signal processing)Inorganic Chemistry
researchProduct

Energy harvesting using piezoelectric transducers for suspension systems

2020

Abstract Energy harvesting by using functional materials in suspension systems bear potential to win-back certain (even if low) amounts of vibrational energy, otherwise dissipated via the conventional (passive) dampers. Piezoelectric (PE) ceramics are functional materials that can be used for transforming mechanical energy into electrical and vice versa. In this paper, we study the capabilities and efficiency of energy harvesting (EH) with PE transducers under two different kinds of external excitation: i) Periodic and ii) stochastic. An appropriate nonlinear lumped parameter electromechanical model (LPEM) is brought into the two-port network notation. Laboratory experiments were conducted …

0209 industrial biotechnologyMaterials scienceMechanical EngineeringMechanical engineering02 engineering and technologyVDP::Electro-technical sciences: 540021001 nanoscience & nanotechnology7. Clean energyPiezoelectricityComputer Science ApplicationsDamperPower (physics)VDP::Elektrotekniske fag: 540Nonlinear system020901 industrial engineering & automationTransducerControl and Systems EngineeringElectrical and Electronic Engineering0210 nano-technologyEnergy harvestingMechanical energyExcitationMechatronics
researchProduct

Dissipation in suspension system augmented by piezoelectric stack: port-Hamiltonian approach

2020

Analysis of damping in semi-active and active suspension systems is prerequisite for an advanced control and, eventually, energy harvesting functions. This paper addresses the damping in suspension system augmented by the piezoelectric (PE) stack. The Hamiltonian system approach with port-power modeling of single subsystems is used for describing and studying the dissipative properties of piezoelectric stack element, integrated in series with a standard quarter-car suspension. The slightly improved, compared to the underlying passive suspension system, frequency response of the sprung mass acceleration is demonstrated. Moreover, the overall power flow in the system, caused by the disturbing…

0301 basic medicinePhysicsFrequency responseDissipationActive suspension03 medical and health sciences030104 developmental biology0302 clinical medicineStack (abstract data type)Control theoryDissipative systemSprung massSuspension (vehicle)Energy harvesting030217 neurology & neurosurgery2020 28th Mediterranean Conference on Control and Automation (MED)
researchProduct

Solar Inexhaustible Power Source for Wireless Sensor Node

2008

Currently the appearance of really low power wireless transceivers is motivating the use of renewable energies to power embedded wireless sensor nodes in many applications. Nevertheless, energy storage and its degradation still keep on being the main issues in the design of any battery powered device. We present an autonomous power source based on a new system architecture, which uses the energy scavenging to replenish two different rechargeable energy buffers instead of the conventional single one. Combining appropriately a degradable large backup battery (Lithium-Ion) and a shorter but non degradable storage element (Supercapacitor), the lifetime of the group can be widely extended to wha…

Battery (electricity)EngineeringBackup batterybusiness.industryEmbedded systemElectrical engineeringWirelessbusinessWireless sensor networkEnergy harvestingEnergy storageSolar powerRenewable energy2008 IEEE Instrumentation and Measurement Technology Conference
researchProduct

An over-the-distance wireless battery charger based on RF energy harvesting

2017

An RF powered receiver silicon IC (integrated circuit) for RF energy harvesting is presented as wireless battery charger. This includes an RF-to-DC energy converter specifically designed with a sensitivity of -18.8 dBm and an energy conversion efficiency of ∼45% at 900 MHz with a transmitting power of 0.5 W in free space. Experimental results concerned with remotely battery charging using a complete prototype working in realistic scenarios will be shown.

Battery (electricity)EngineeringInternet of Things02 engineering and technologyIntegrated circuitInternet of Things; Litium Ion Battery; Radio Frequency Harvesting; Wireless Battery Charger; Wireless Sensor Networks; Hardware and Architecture; Electrical and Electronic Engineering; Modeling and SimulationSettore ING-INF/01 - ElettronicaRadio Frequency Harvestinglaw.inventionBattery chargerlawWireless Battery ChargerHardware_INTEGRATEDCIRCUITS0202 electrical engineering electronic engineering information engineeringElectronic engineeringElectrical and Electronic Engineeringbusiness.industry020208 electrical & electronic engineeringEnergy conversion efficiencyElectrical engineering020206 networking & telecommunicationsHardware and ArchitectureModeling and SimulationLitium Ion BatteryRadio frequencyInternet of ThingWireless Sensor NetworksbusinessEnergy harvestingSensitivity (electronics)Wireless sensor networkWireless Sensor Network2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)
researchProduct

Comparison among different rainfall energy harvesting structures

2018

In this paper, an experimental comparison between different rainfall harvesting devices through the study of the electrical rectifying circuit is proposed. In more detail, three harvesting structures are considered: the cantilever, the bridge and the floating circle. Different waveforms were acquired and discussed. The processed data were compared in order to suggest the best choice for the rectifying circuit, from the simplest one to that most frequently endorsed in the technical literature.

CantileverComputer science020209 energyHardware_PERFORMANCEANDRELIABILITY02 engineering and technologylcsh:TechnologyEnergy harvesterlcsh:ChemistryEngineering (all)Hardware_INTEGRATEDCIRCUITS0202 electrical engineering electronic engineering information engineeringElectronic engineeringWaveformGeneral Materials ScienceRectifying circuitlcsh:QH301-705.5InstrumentationFluid Flow and Transfer ProcessesEnergy harvester; Piezoelectric effect; Rectifying circuit; Materials Science (all); Instrumentation; Engineering (all); Process Chemistry and Technology; Computer Science Applications1707 Computer Vision and Pattern Recognition; Fluid Flow and Transfer Processeslcsh:TProcess Chemistry and TechnologyGeneral EngineeringEnergy harvesterComputer Science Applications1707 Computer Vision and Pattern RecognitionTechnical literaturelcsh:QC1-999Computer Science ApplicationsSettore ING-IND/31 - Elettrotecnicalcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Materials Science (all)lcsh:Engineering (General). Civil engineering (General)Energy harvestinglcsh:PhysicsPiezoelectric effectHardware_LOGICDESIGN
researchProduct

A Battery-Free Smart Sensor Powered with RF Energy

2018

The development of Internet of Things (IoT) infrastructure and applications is stimulating advanced and innovative ideas and solutions, some of which are pushing the limits of state-of-the-art technology. The increasing demand for Wireless Sensor Network (WSN) that must be capable of collecting and sharing data wirelessly while often positioned in places hard to reach and service, motivates engineers to look for innovative energy harvesting and wireless power transfer solutions to implement battery-free sensor nodes. Due to the pervasiveness of RF (Radio Frequency) energy, RF harvesting that can reach out-of-sight places could be a key technology to wirelessly power IoT sensor devices, whic…

Computer Networks and CommunicationsComputer scienceInternet of ThingsEnergy Engineering and Power TechnologyRadio Frequency HarvestingIndustrial and Manufacturing EngineeringArtificial IntelligenceWireless Battery ChargerWirelessRenewable EnergyWireless power transferInstrumentationSustainability and the Environmentbusiness.industryRF power amplifierTransmitterElectrical engineeringComputer Science Applications1707 Computer Vision and Pattern RecognitionInternet of Things; Litium Ion Battery; Radio Frequency Harvesting; Wireless Battery Charger; Wireless Power Transfer; Wireless Sensor Networks; Artificial Intelligence; Computer Networks and Communications; Computer Science Applications1707 Computer Vision and Pattern Recognition; Energy Engineering and Power Technology; Renewable Energy Sustainability and the Environment; Industrial and Manufacturing Engineering; InstrumentationSensor nodeLitium Ion BatteryWireless Power TransferRadio frequencyInternet of ThingWireless Sensor NetworksbusinessEnergy harvestingWireless sensor network2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)
researchProduct